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Abstract

In the past decade, high throughput training of deep learning models has bolstered their success
in completing difficult tasks. Unfortunately, a theoretical understanding of why these models are so
successful is missing. Some work investigating why deep learning models generalize so well utilize
concepts from information theory and analyze the information gain between the inputs (and outputs)
and the internal representations. A problem that arose in this kind of approach was related to how
mutual information was computed in deterministic neural networks. Goldfeld et al. (2018) developed
a new method for estimating mutual information by analyzing information theoretic quantities
using noisy neural networks and observed that the reduction in mutual information between the
internal representation and the inputs (compression) is associated with the clustering of internal
representations.

In this work, we reproduce some simple empirical observations in Goldfeld et al. (2018). Further-
more, we conduct some experiments related to modifying the data distribution, as previous work
studying information flow in neural networks used a uniform input data distribution. We observe
that for a single Gaussian data distribution, using a non-saturating non-linearity in the hidden layer
such as LeakyReLU, we do not observe a clustering of the internal representations.

1 Introduction

Deep neural networks and their optimization algorithms have been shown to be extremely successful in
a variety of complex tasks including object categorization (Szegedy et al. (2015)), image segmentation
(Long et al. (2015)) and speech recognition (Graves et al. (2013)). Unfortunately, a theoretical
understanding of why neural networks with millions of parameters can generalize so well on a variety of
tasks is arguably non-existent. There is, however, some work that analyzes generalization capabilities
using Rademacher complexity (such as Golowich et al. (2018), Neyshabur et al. (2017)). In this work,
we focus on another method that uses information theoretic quantities to analyze neural networks.

Previous studies such as Shwartz-Ziv and Tishby (2017) and Saxe et al. (2018) investigate the
evolution of hidden layer representations in neural networks by analyzing the information gain between
the hidden layers and the inputs and outputs. Notably, Shwartz-Ziv and Tishby (2017) observe that
when a neural network is trained on a binary classification task, there are two distinct phases in the
changes of mutual information over training epochs. In the first phase, termed the “fitting phase”, the
mutual information between the inputs and the intermediate layer representations increases. The next
phase that was proposed by the authors is known as the “representation compression” phase, where the
mutual information between the inputs and the intermediate layer representations decrease. This phase
was observed to be much longer than the fitting phase in terms of training epochs and the authors
suggested it was during this second phase that parts of the representation not used for the classification
task were eliminated.
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Some technical issues arose in work studying neural network generalization from an information
theoretic point of view. These issues relate to the estimation of mutual information in deterministic
neural networks. In deterministic neural networks, the hidden layer representations are deterministic
functions of the inputs. Thus, the conditional entropy of a hidden layer representation given the input
is zero (i.e. H(f(X) | X) = 0, where f is a deterministic transformation of the input through layers of
a neural network and X is the input). Since the conditional entropy is zero, the mutual information
between the inputs and hidden layer representations should be constant (equal to the entropy of the
inputs or the hidden representations), which is the opposite of the previous observations that the mutual
information between internal representations and the input varies over training epochs.

Goldfeld et al. (2018) proposed training noisy neural networks in order to rectify the issue with
computing mutual information in a deterministic setting. It was shown that noisy neural network
performance is not drastically affected by the injected (independent, Gaussian) noise (as long as the
“signal to noise” ratio is not too small). In addition, the authors suggest that training with injected
noise at each layer can be related to the improved generalization ability of the neural network.

The report is organized as follows. In Section 2, we summarize the mutual information estimator
and how mutual information is computed. We also summarize the simple neural networks we use
and the input data distributions that the networks were trained on. The results and observations are
presented in Section 3. We conclude and present future directions in Section 4.

2 Methods

The code can be found at https://github.com/nathankong/information_bottleneck.

2.1 Noisy Neural Networks

In all the models, Gaussian noise is injected after the point-wise non-linearity is applied at each layer.
Noise is sampled according to N (0, β2), where β = 0.05. The schematic for each layer is shown in
Figure 1.

Figure 1: Flow diagram through a single neuron. σ is the non-linearity, W (k)
` is the weight matrix

and b` is the bias for layer ` and Z(k)
` is the spherical Gaussian noise injected at each layer at epoch k.

Adapted from Goldfeld et al. (2018).

2.2 Mutual Information

Given two continuous random variables, X and Y , and the joint distribution defined as pX,Y , the
mutual information between them is defined as:

I(X;Y ) ,
∫
x∈X

∫
y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dy dx

=

∫
x∈X

pX(x)

∫
y∈Y

pY |X(y | x) log
pY |X(y | x)
pY (y)

dy dx
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where (x, y) ∈ X × Y . For another continuous random variable, Z, and assuming that it is distributed
according to pZ , the differential entropy of Z is defined as:

h(pZ) , −
∫
z∈Z

pZ(z) log pZ(z) dz

Using the expression for differential entropy, the mutual information can be rewritten as:

I(X;Y ) = h(pY )− h(pY |X)

= h(pY )−
∫
x∈X

pX(x)h(pY |X=x) dx

= h(pY )− EX∼pX
[
h(pY |X=x)

]
Note that when the distribution of X is continuous, we can approximate the expectation (the second
term above) using Monte Carlo sampling. Concretely, we can approximate the expectation using N
samples from pX (where x(i) is the i-th sample) as follows:

EX∼pX
[
h(pY |X=x)

]
≈ 1

N

N∑
i=1

h
(
pY |X=x(i)

)
2.2.1 Mutual Information Estimator

The mutual information estimator used in this work was developed in Goldfeld et al. (2018). We briefly
summarize it here using notation shown in Figure 1. Since T` = S` + Z`, we have that pT`

= pS`
∗ ϕ,

where ϕ is a Gaussian distribution. We can estimate pS`
empirically by computing the outputs at a

layer before noise is injected (i.e. S`) using n samples from the data distribution. The n samples define
p̂S`

. Thus, pT`
is estimated as:

pT`
(x) = (pS`

∗ ϕ) (x) ≈ (p̂S`
∗ ϕ) (x)

=

∫
p̂S`

(y)ϕ(x− y) dy

=

∫
1

n

n∑
j=1

δ (y − xj)ϕ(x− y) dy

=
1

n

n∑
j=1

ϕ (x− xj)

where δ(r) = 1 if r = 0, and 0 otherwise and xj is the j-th output at a particular layer.
Similarly, in order to estimate the conditional entropy of an internal layer given a particular input,

we need to estimate pT`|X=xi
. To do this, we similarly compute the convolution of the output before

noise is injected with the noise distribution. Concretely:

pT`|X=xi
= pS`|X=xi

∗ ϕ

The conditional distribution, pS`|X=x(i) , is estimated by first sampling xi from pX and then repeatedly
fed into the neural network ni times. The ni outputs define the empirical distribution p̂S`|X=x(i) . Thus,
we can estimate pT`|X=x(i) as follows:

pT`|X=x(i)(y) ≈ p̂
S
(i)
`

(y) =
1

ni

ni∑
j=1

ϕ
(
y − x(i)j

)
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Finally, with the expressions for conditional and unconditional entropy, we can compute the mutual
information between the input and a hidden layer representation.

I(X;T`) = H(T`)−H(T` | X)

≈ [h(p̂S`
∗ ϕ)]− Ex∼pX

[
h
(
p̂
S
(x)
`

∗ ϕ
)]

≈ h(p̂S`
∗ ϕ)− 1

N

N∑
j=1

[
h

(
p̂
S
(xj)

`

∗ ϕ
)]

where N is the number of Monte Carlo samples to use and xj is the j-th Monte Carlo sample from pX .

2.3 Simple Neural Networks

The training dynamics for binary classification tasks (output is either +1 or −1) and simple neural
networks were analyzed. Each network was trained using stochastic gradient descent. The leaky
ReLU non-linearity is defined as: LeakyReLU(x) = max{x, x/10}. z1 and z2 are noise samples from
N (0, 0.052). The neural network models are described below.

1. Single Neuron Tanh Network

This network is defined as: y = tanh(wx+ b). The weight and bias was initialized to 0.

2. Two Neuron LeakyReLU–LeakyReLU Network

This network is defined as: y = LeakyReLU (w2 · (LeakyReLU(w1 · x+ b1) + z1) + b2) + z2. The
weight initializations were as follows: w1 = 0, b1 = 4.5, w2 = −1, b2 = 0.

3. Two Neuron Tanh–Tanh Network

This network is defined as: y = tanh (w2 · (tanh(w1 · x+ b1) + z1) + b2) + z2. The weights and
biases were initialized to 0.

4. Two Neuron LeakyReLU–Tanh Network

This network is defined as: y = tanh (w2 · (LeakyReLU(w1 · x+ b1) + z1) + b2) + z2. The weights
and biases were initialized to 0.

Networks 1 and 2 were used in Goldfeld et al. (2018) as simple examples to show the empirical behaviour
of mutual information evolution over training epochs.

2.4 Data Distributions

Three different data distributions were used in the experiments. Refer to the previous section for the
numbering of the network models.

1. Uniform distribution

Two different datasets were used in this scenario. Both were also used in Goldfeld et al. (2018)
as simple examples. The first dataset consisted of four values: {−3,−1, 1, 3}. {−3,−1, 1}
were labelled as −1 and {1} was labelled as +1. The second dataset consisted of eight values:
{1, 2, 3, 4, 5, 6, 7, 8}. {1, 2, 3, 4} were labelled as 0 and {5, 6, 7, 8} were labelled as 0.25. We used
N = 100 Monte Carlo samples for the dataset with four values and N = 200 for the dataset with
eight values.

The four value dataset was used to train network 1 with learning rate 0.0005. The eight value
dataset was used to train network 2 with learning rate 0.0001 and decreased by a factor of 20
when the test set accuracy was at least 0.99.

4



2. Univariate Gaussian distribution

The data were generated from a univariate Gaussian distribution with mean 0 and variance 0.25
(i.e. X ∼ N (0, 0.25)). Generated values greater than 0 had labels of +1 and values less than 0
had labels of −1. We used N = 500 Monte Carlo samples for this data distribution.

This dataset was used to train networks 3 and 4. Both networks were trained with a learning rate
of 0.005, which was reduced by a factor of 20 when the test set accuracy was at least 0.99.

3. Univariate Gaussian mixture distribution

The data were generated from an equal mixture of two Gaussian distributions: N (−1, 0.25) and
N (1, 0.25). Generated values greater than 0 had labels of +1 and values less than 0 had labels of
−1. We used N = 500 Monte Carlo samples for this data distribution.

This dataset was used to train network 1 with learning rate 0.0001. The learning rate was
decreased by a factor of 20 when the test set accuracy was at least 0.99.

Dataset 1 (both the four and eight value datasets) were used in Goldfeld et al. (2018) to show
the clustering behaviour of the hidden layer and output representations and the changes in mutual
information as a function of training epochs.

3 Results

3.1 Uniform Data Distribution

The role of this set of experiments was to reproduce some key phenomena that were presented in
Goldfeld et al. (2018). Figure 2 shows how the mutual information between the output and input
changes as a function of the training epoch for network 1. We can observe that the mutual information
decreases at two points in the training. The first time it decreases is when outputs cluster from four to
three clusters (around epoch 25). The second time it decreases occurs when the outputs cluster from
three to two clusters (around epoch 100), where each cluster corresponds to the classification label (i.e.
+1 or −1). This qualitatively recapitulates observations found in Goldfeld et al. (2018) (cf. Figure 5 in
Goldfeld et al. (2018)).

(a) Evolution of mutual information between T1 and
the inputs over training epochs.

(b) Evolution of the PDF of T1(x) as a function of the
training epoch.

Figure 2: Observations from network 1 trained on the four value dataset.

Next, we trained network 2 to perform binary classification on the eight value dataset. Recall that
this network utilizes a non-saturating non-linearity. Figure 3 shows how mutual information between
hidden layers and the inputs and how the distribution at each hidden layer evolves over training epochs.
We similarly observe a clustering of the inputs at the hidden layers and at the outputs. In the hidden
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layer, we see that mutual information increases to its maximum when the inputs separate into the eight
clusters (see Figure 3b). It starts to decrease when the inputs start to cluster (starting at around epoch
150). At the output, the inputs separate into two clusters corresponding the labels of the dataset, which
are 0 and 0.25 (see Figure 3c). When this occurs, the mutual information between the outputs and the
inputs increases (around epoch 150).

(a) Evolution of mutual information between T1 and T2
and the inputs over training epochs.

(b) Evolution of the PDF of T1(x) as a function of the
training epoch.

(c) Evolution of the PDF of T2(x) as a function of the training epoch.

Figure 3: Observations from network 2 trained on the eight value dataset.

3.2 Univariate Gaussian Data Distribution

We trained two different two neuron network models on this data. The difference between the two
models is the non-linearity used (tanh vs. LeakyReLU). We sought to understand how changes to the
hidden layer non-linearity would affect internal representations and mutual information. Figure 4 shows
how mutual information and the distribution of internal/output representations evolves over training
epochs for the two neuron Tanh–Tanh network. The observation that mutual information between
the inputs and hidden layer/output representations decreases with the clustering of representations
is recapitulated. Note that the mutual information between the output layer and the inputs is less
than that between the inputs and hidden layers, which is expected due to the stronger clustering in the
output representations.

Figure 5 shows how mutual information and the distribution of internal/output representations
evolves over training epochs for the two neuron LeakyReLU–Tanh network. Focussing on Figure 5a we
notice that the mutual information between the inputs and the hidden layer representations continues to
increase as training progresses. This is the opposite of what was observed in the previous experiments
where the mutual information would decrease as a result of the representations clustering. Focussing on
Figure 5b, we observe that the distribution of the internal layer representations becomes more diffuse
as training progresses.
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(a) Evolution of mutual information between T1 and T2
and the inputs over training epochs.

(b) Evolution of the PDF of T1(x) as a function of the
training epoch.

(c) Evolution of the PDF of T2(x) as a function of the training epoch.

Figure 4: Observations from network 3 trained on the single Gaussian dataset. (i.e. tanh non-linearity)

(a) Evolution of mutual information between T1 and T2
and the inputs over training epochs.

(b) Evolution of the PDF of T1(x) as a function of the
training epoch.

(c) Evolution of the PDF of T2(x) as a function of the training epoch.

Figure 5: Observations from network 4 trained on the single Gaussian dataset. (i.e. LeakyReLU
non-linearity)
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3.3 Univariate Gaussian Mixture Data Distribution

Figure 6 shows the evolution of mutual information and the distribution of the output when the single
neuron network (i.e. network 1) is trained to perform binary classification on data distributed according
to an equal mixture of two Gaussians. We observe that when the outputs first split into two clusters,
the mutual information increases to its maximum. However, as the outputs slowly cluster to the labels
(−1 and +1), the mutual information decreases and converges to approximately 1 nat. This reduction
in mutual information is intuitive since we see that the distribution of outputs becomes less “noisy” (i.e.
the distribution evolves to become more similar to point masses at +1 and −1) as training progresses.

(a) Evolution of mutual information between T1 and
the inputs over training epochs.

(b) Evolution of the PDF of T1(x) as a function of the
training epoch.

Figure 6: Observations from network 1 trained on the mixture of Gaussians dataset.

4 Discussion and Conclusions

Part of the work performed in this study replicated empirical observations found in Goldfeld et al. (2018).
The hidden layer and output distributions from our experiments (in particular, the four value dataset
and the eight value dataset) also exhibit the clustering phenomenon and the associated reduction
in mutual information. However, when we utilized a single univariate Gaussian data distribution
and a network with a non-saturating non-linearity, we do not see a clustering of the hidden layer
representations. Furthermore, we do not observe the reduction in mutual information. In fact, it
appears to continue increasing as a function of training epoch. This observation is interesting and
warrants further experiments including a uniform input data distribution with continuous values (i.e.
instead of a discrete dataset). Future work also includes training a recurrent neural network to perform
a binary classification task and analyzing the evolution of mutual information between the inputs and
hidden representations.
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